BATTLE CASUALTY SURVIVAL WITH EMERGENCY TOURNIQUET USE TO STOP LIMB BLEEDING

John F. Kragh, Jr, COL, MC, USA,* Michelle L. Littrel, CPT, AN, USA,† John A. Jones,*
Thomas J. Walters, PHD,* David G. Baer, PHD,* Charles E. Wade, PHD,* and John B. Holcomb, MD*†

*US Army Institute of Surgical Research (USAISR), Fort Sam Houston, Texas and †Department of Nursing, Brooke Army Medical Center, Fort Sam Houston, Texas

Reprint Address: John F. Kragh, Jr, COL, MC, USA, Bone and Soft Tissue Trauma Research Program, US Army Institute of Surgical Research, 3400 Rawley E. Chambers Ave., Bldg. 3611, Room L82-16, Fort Sam Houston, TX 78234-6315

Abstract—Background: In a previous study conducted at a combat support hospital in Iraq, we reported the major lifesaving benefits of emergency tourniquets to stop bleeding in major limb trauma. Morbidity associated with tourniquet use was minor. Study Objectives: The objective of this study is to further analyze emergency tourniquet use in combat casualty care. Design and Setting: This report is a continuation of our previous study of tourniquet use in casualties admitted to a combat support hospital (NCT00517166 at www.ClinicalTrials.gov). Methods: After verifying comparable methodologies for the first study and the current study, we compared patient results for these two time periods and then pooled data to analyze outcomes with a larger sample size. Results: The total study population was 499 (232 in the previous study and 267 in the current study). In all, 862 tourniquets were applied on 651 limbs. Survival was 87% for both study periods. Morbidity rates for palsies at the level of the tourniquet were 1.7% for study 1 and 1.5% for study 2; major limb shortening was 0.4% for both. Survival was associated with prehospital application (89% vs. 78% hospital, p < 0.01) and application before the onset of shock (96% vs. 4% after). Conclusions: This study shows consistent lifesaving benefits and low risk of emergency tourniquets to stop bleeding in major limb trauma.

Keywords—tourniquet; trauma; major; military; limb injury; hemorrhage control

INTRODUCTION

Despite recent positive reports of the use of emergency tourniquets from studies conducted at United States (US) combat support hospitals in Iraq, these devices are still considered controversial by some providers (1,2). We recently reported major lifesaving benefits and minor morbidity risks with emergency tourniquet use to stop bleeding in major limb trauma (3,4). Our goal was to see if our preliminary findings would hold true as the war progressed and tourniquets continued to be used. The fielding of tourniquets during the current war and the number of casualties permitted us to study and continue to evaluate performance (5,6). Improving prehospital hemorrhage control is vital to military and civilian trauma care, and we continue our efforts to fill knowl-
edge gaps regarding first aid of limb-injured patients (7–13). There is no consensus on tourniquet use in civilian trauma, but an adequate collection of military data may help to change this. In our continued study of patients who had tourniquets applied in the field or in the emergency department (ED), our objective was to analyze use and possibly refine our understanding of when and if tourniquets should be used as first aid, to refine doctrine and training if indicated. Specifically, our objective was to assess morbidity and mortality associated with tourniquet use.

MATERIALS AND METHODS
Study Design, Setting, and Participant Selection

The current report was designed to test the consistency of the findings of our previous reports on emergency tourniquet use (3,4). The design was an observational study of patient care; there was no experiment or intervention. Before the study began we predetermined the data of interest, that is, possible morbidity as well as the mortality rates with the use of tourniquets. The study was approved by our institutional review board as part of an ongoing prospective performance improvement project on tourniquet use (NCT00517166 at www.ClinicalTrials.gov). The informed consent waiver was approved. Procedures followed were in accord with the Helsinki Declaration of 1975.

The setting was a military hospital in support of combat and related security work in Iraq, where casualties, including civilians, were admitted directly or transferred from forward surgical teams. Prehospital tourniquets were applied by people with a wide range of medical skills and included casualties themselves, lay bystanders, soldiers, medics, nurses, and doctors. Tourniquets are part of standard prehospital care to stop bleeding in combat and are often used before pressure dressings during care under fire. All deployed US servicepersons get tourniquet training with instructions to apply them as soon as possible to stop potentially lethal external limb bleeding; the soldiers were taught how to use the tourniquets using a simplified form of Tactical Combat Casualty Care in Prehospital Trauma Life Support (14). The aim of tourniquet use is to prevent hemorrhagic shock and save lives while minimizing morbidity. Casualties were eventually transferred to other hospitals for definitive care.

All patients at the combat support hospital who had a tourniquet of any type used in their emergent health care were included in the study. Patients with tourniquets ready at the bedside, purposefully left loose, or whose first applied tourniquet was in the hospital operating room, were excluded. Detainees and prisoners of war are restricted from research by military policies and were also excluded.

The study period was 1 year, divided into two consecutive 6-month time periods. The primary investigator (first author), an orthopedic surgeon with extensive experience with emergency tourniquet use, was the site investigator for the first time period; the second author, a registered nurse new to tourniquets, was the site investigator for the second time period. The nurse was a founding member of a deployed research team. Hospital providers were replaced at the same time as the investigators.

Methods of Measurement

We evaluated tourniquet use in two ways. We categorized patients by whether their tourniquets were applied prehospital or in the ED, and also when they were placed physiologically in relation to shock. ED tourniquet patients were those patients who had a tourniquet first placed on a limb in the ED; the other patients had a tourniquet placed on a limb in the prehospital setting.

Shock was defined by medics or hospital providers as a weak or absent radial pulse in an uninjured limb without a tourniquet. Patients with tourniquets first placed after the onset of shock were analyzed as “shock present,” and all other patients were “shock absent” before application of first tourniquet. This validated approach is consistent with the clinical definitions used by the Tactical Combat Casualty Care course, taught to all military medics, and correlated with systolic blood pressures as described by McManus et al. (14,15).

Survival rate was the primary outcome and morbidity rate was the secondary outcome. We defined indicated and appropriate use by the following criteria: indicated use was medical (vessel lesion hemorrhage unresponsive to a pressure dressing) or tactical for care under fire; appropriate use entailed no misplacement (e.g., wrong limb or distal to a wound), purposeful venous tourniquet, or misuse (e.g., upside down).

Data were collected prospectively by the two on-site investigators. Data were collected from the patients, their providers or attendants, records, or medical reports such as the morbidity and mortality reports. We had access to electronic records of casualties. Data collected included patient age, gender, application time (time between injury and use) in minutes, setting of tourniquet application (prehospital or ED), mechanism of injury, treatment (including operative procedures, number of transfused units [all blood products were summed]), injury severity scores, abbreviated injury score (AIS), base deficit, systolic blood pressure, international normalized ratio, initial heart rate, injury description (e.g., traumatic ampu-
tation, open fracture, artery lesion), outcome (e.g., limb salvage, death), complications (e.g., necrotic muscle, compartment syndrome, nerve palsy), and duration of follow-up.

Statistical Analysis

For comparison of time periods 1 and 2, we compared proportions of key variables such as survival rates. We used descriptive statistics and Fisher’s exact test for contingency testing. Software included Excel (version 9.7, Microsoft Corporation, Redmond, WA), and SAS/STAT (version 9.1, SAS Institute, Cary, NC).

RESULTS

The two study periods were similar for the number of patients, deaths, palsies at the level of the tourniquet, and limbs with major shortening, so these data were consistent (Table 1), and therefore we pooled data for further analysis.

Study Group Demographics

The study group consisted of 499 patients from 13 nations, and included 257 Iraqis and 226 Americans. There were 479 males and 20 females, 16 children and 5 elderly patients. The average age was 29 years. Follow-up averaged 36 days.

There were 862 tourniquets applied to 651 limbs (328 left and 323 right; 176 upper limbs and 475 lower limbs). For the 862 tourniquets with known number per limb, one tourniquet was used in 445 limbs, two tourniquets were used in 166 limbs, three tourniquets were used in 24 limbs, four tourniquets were used in two limbs, and five tourniquets were used in one limb. For 875 tourniquets, the study averaged 1.4 patients and 2.4 tourniquets per day, with 1.3 tourniquets per limb. The body regions (forearm, arm, leg, and thigh) where the tourniquets were applied included 13 forearms, 162 arms, 46 legs, and 436 thighs. Eight limbs had tourniquets applied above and below the major joints (knee or elbow). For two limbs, data on which body region had the tourniquet were missing.

The patients showed pathophysiology associated with hemorrhage and coagulopathy (Table 2).

Indicated and Unindicated Emergency Tourniquet Use

Of all 651 limbs (499 patients), 635 (483 patients) had indicated tourniquet use. There were 16 limbs (15 patients) that had tourniquets applied but did not have a medical or tactical indication. Of the 15 patients, one Iraqi had a right biceps brachii soft tissue injury, but had a tourniquet applied prehospital to the left upper extremity. The tourniquet was removed in the ED; it had been

Table 1. Comparison of Key Variables of the Two Time Periods

<table>
<thead>
<tr>
<th>Study Population Variable</th>
<th>Unit %</th>
<th>Previous n = 232</th>
<th>Current n = 267</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of injury: explosion</td>
<td>% of Mechanisms</td>
<td>69</td>
<td>75</td>
<td>0.14</td>
</tr>
<tr>
<td>Use site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prehospital</td>
<td>% of Patients</td>
<td>84</td>
<td>86</td>
<td>0.51</td>
</tr>
<tr>
<td>Emergency department</td>
<td>% of Patients</td>
<td>16</td>
<td>14</td>
<td>0.51</td>
</tr>
<tr>
<td>Survival rate</td>
<td>% of Patients</td>
<td>87</td>
<td>87</td>
<td>0.95</td>
</tr>
<tr>
<td>Morbidity rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palsy</td>
<td>% of Patients</td>
<td>1.7</td>
<td>1.5</td>
<td>0.84</td>
</tr>
<tr>
<td>Major limb shortening</td>
<td>% of Patients</td>
<td>0.4</td>
<td>0.4</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Table 2. Pathophysiologic Data Summary of the Study Group

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Average ± SD</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial base deficit</td>
<td>424</td>
<td>−6 ± 6.5</td>
<td>−4</td>
<td>−27</td>
<td>3</td>
</tr>
<tr>
<td>Initial heart rate</td>
<td>464</td>
<td>105 ± 32.5</td>
<td>107</td>
<td>0</td>
<td>208</td>
</tr>
<tr>
<td>INR (international normalized ratio)</td>
<td>414</td>
<td>1.6 ± 3.8</td>
<td>1.2</td>
<td>0.6</td>
<td>74</td>
</tr>
<tr>
<td>Transfusion units</td>
<td>472</td>
<td>16 ± 25.6</td>
<td>6</td>
<td>0</td>
<td>194</td>
</tr>
</tbody>
</table>

SD = standard deviation; n = number of patients with data.
used for 25 min. The patient had no morbidity from the tourniquet, and this use was unindicated medically (a pressure dressing sufficed) and misplaced (wrong limb). For this one patient, the tourniquet was indicated for care under fire. Fourteen patients had 15 tourniquets for 15 soft tissue injuries that were converted to pressure dressings in the ED, and no tactical indication was present prehospital for these 14 patients. A prehospital pressure dressing would have sufficed for the 15 wounds. Of the 16 unindicated tourniquets, the maximum tourniquet duration was 2 h, and none of the 16 limbs had morbidity.

Appropriateness, Inappropriateness, and Misuse of Emergency Tourniquet Use

All patients except one had emergency tourniquet use that was appropriate. All were aimed at being an arterial tourniquet except for one patient who had a purposeful venous tourniquet. This one patient, with open type 3B tibia and fibula shaft fractures, had a medically indicated tourniquet used inappropriately as a venous tourniquet in the ED. The patient also had 40% body surface area burns. No complications other than blood loss were attributable to inappropriate tourniquet use, and tourniquet replacements or corrections were made on the spot (3).

Misuse occurred in 13 cases, including the patient described above who had a tourniquet placed on the wrong limb (Table 3). These problems were addressed with improved training, device design refinements, and more device testing and maintenance procedures.

Survival Rate was Higher in Patients with Tourniquets Used vs. Not Used

Ten patients who came to our hospital during the study period had isolated limb exsanguination amenable to tourniquet application, but tourniquets were either unavailable (none at scene), inaccessible (packed away and found after the patient died), or not placed in time after extrication from vehicles or after transport before the patient died. Cause of death in all 10 patients was exsanguination from limb injuries. In contrast to the 10 casualties without tourniquets, in the 499 casualties with tourniquets, 16 of the 65 deaths were from isolated limb exsanguination, often with tourniquets placed after shock onset (19 had severe [AIS 3 to 6] head wounds, 15 had severe abdominal wounds, 7 had severe chest wounds, 4 had severe burns, and 2 had two or more equally severe body regions injured). From the 10 patients without tourniquets (0% survival) and the 499 with tourniquets (87% survival), we measured the mortality rate of patients who exsanguinated from isolated limb injuries at 2% (10/519).

Survival Rate was Higher When Shock was Not Present before Tourniquet Use Compared to When Shock was Present

The results of tourniquet use with shock present vs. absent were consistent in the two time periods, so we pooled the data (Tables 4, 5). Overall, patients had a 90% (429/476) survival when tourniquets were applied before shock, compared to an 18% (4/22) survival when placed after the onset of shock (Table 5). Tourniquet use in the absence of shock was associated with survival ($p < 0.001$), and prehospital use was associated with survival ($p = 0.015$; Table 6).

Prehospital use was associated with shock absence and ED use was associated with shock presence ($p <$

Table 3. Misuse Occurrences

<table>
<thead>
<tr>
<th>Misuse Occurrence</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>One patient had a tourniquet on a wrong limb</td>
<td></td>
</tr>
<tr>
<td>One patient had upside-down use of a pneumatic tourniquet</td>
<td></td>
</tr>
<tr>
<td>Users twisted the air release cap off and thus broke two pneumatic tourniquets</td>
<td></td>
</tr>
<tr>
<td>One bar broke on a windlass tourniquet</td>
<td></td>
</tr>
<tr>
<td>One clamp jammed on a pneumatic device</td>
<td></td>
</tr>
<tr>
<td>One pneumatic bladder folded over and jammed in the clamp</td>
<td></td>
</tr>
<tr>
<td>One pneumatic bulb popped off</td>
<td></td>
</tr>
<tr>
<td>One tourniquet bar with a smooth texture was too bloody and slippery to secure</td>
<td></td>
</tr>
<tr>
<td>Four pneumatic bladders leaked (scalpel or needle dropped on it during catheterization)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Results Comparing Survival of Patients with Tourniquets Used vs. Not Used

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Patients with Tourniquet Use with Shock Absent (n Survivors/n Total, %)</th>
<th>Patients with Tourniquet Use with Shock Present (n Survivors/n Total, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>222/232, 96%</td>
<td>10/232, 4%</td>
</tr>
<tr>
<td>2</td>
<td>255/267, 96%</td>
<td>12/267, 4%</td>
</tr>
<tr>
<td>Pooled</td>
<td>477/499, 96%</td>
<td>22/499, 4%</td>
</tr>
</tbody>
</table>

Table 5. Survival Rates by Prehospital vs. ED Tourniquet Use and Shock Present vs. Absent at the Time of Application

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Shock Absent</th>
<th>Shock Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prehospital</td>
<td>90%</td>
<td>20%</td>
</tr>
<tr>
<td>Emergency department</td>
<td>93%</td>
<td>23%</td>
</tr>
</tbody>
</table>

ED = emergency department.
First aid devices, such as pelvic binders, that is, they have no survival benefit evidenced, and military anti-shock trousers are associated with increased mortality for patients with some diagnoses (18).

A minor finding of the present report was that prehospital death rates from isolated limb exsanguination have dropped to 2%, compared to 9% in the Vietnam War. Tourniquets can control limb hemorrhage, a leading cause of death on the battlefield, with more frequent tourniquet use attributed to fewer deaths from this cause (3,5,6,19–24). In the Vietnam War, when tourniquet use was uneven, about 9% of casualties died from isolated limb exsanguination (7,25). In Somalia, tourniquet use was more common than in Vietnam, and 7% of battlefield casualties died of limb exsanguination (26). Early in the current war, 2% of casualties died from isolated limb exsanguination, and isolated limb exsanguination is no longer considered the leading cause of preventable death on the battlefield in US casualties (27,28). Among Israeli soldiers, the most avid users of tourniquets, investigators found that 0% patients died from isolated limb exsanguination (29).

After studying 499 casualties, it is clear that patients were eligible for tourniquet use in emergency settings if they had a compressible limb area proximal to a wound that risks lethal exsanguination. The tourniquet was not designed to save patients with associated catastrophic head, chest, and abdominal injuries. One patient beyond saving had a traumatic hemipelvectomy; no compression was effective about the hemipelvectomy wound. Very proximal wounds in the groin and axilla have poor results if lesions are non-compressible, lesions of intermediate compressibility have intermediate results, and fully compressible lesions have good results (4). The present findings help define which patients are the best candidates for emergency tourniquet use.

The data of the present study indicate that the ideal time to use a tourniquet is before the onset of shock. Shock prevention seems to be a determinant of survival, and prehospital tourniquet use simply treats more patients before shock onset. The main lifesaving opportunity on the battlefield is prehospital hemorrhage control for limb-injured patients (7,25,30,31). The evidence indicates that tourniquets prevent but do not reverse shock. Use may prevent shock from worsening, and may lessen the risk of additional resuscitation and its sequelae.

The wrong time is later, after shock onset, meaning that, by then, much of the lifesaving benefit has been lost. Casualties with tourniquets applied after extraction from vehicles or when casualties exsanguinated before care was given have a high mortality. Hemorrhage can be incremental during transportation, arrival at hospital, during resuscitation, and before, during, and after operation, thus, continuous monitoring for hemorrhage control is recommended (4,22,24,32,33). Even though providers such as ambulance and flight medics provide prehospital care, tourniquet use at such time proved to be too late after shock onset, and earlier use would prevent shock. Battle casualties may exsanguinate rapidly from limb injury, perhaps lethally, in just a minute or 2 (19,26,30,34–37). Casualties sometimes died quickly from hemorrhage without tourniquets, whereas others with tourniquets survived more often and for a longer time, and longer survival permitted more effective resus-

Table 6. Shock, Survival, and Setting Results from 2-by-2 Contingency Testing

<table>
<thead>
<tr>
<th>Condition</th>
<th>statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given shock presence, prehospital vs. ED use was not associated with survival</td>
<td>$\phi = 1.0$</td>
<td>$p = 1.0$</td>
</tr>
<tr>
<td>Given shock absence, prehospital vs. ED use was not associated with survival</td>
<td>$\phi = 0.5$</td>
<td>$p = 0.5$</td>
</tr>
<tr>
<td>Given survivors, prehospital vs. ED use was associated with shock (absent vs. present)</td>
<td>$\phi = 0.001$</td>
<td>$p < 0.001$</td>
</tr>
<tr>
<td>Given non-survivors, prehospital vs. ED use was associated with shock (absent vs. present)</td>
<td>$\phi = 0.001$</td>
<td>$p < 0.001$</td>
</tr>
<tr>
<td>Given prehospital use, shock (absent vs. present) was associated with survival</td>
<td>$\phi = 0.001$</td>
<td>$p < 0.001$</td>
</tr>
<tr>
<td>Given ED use, shock (absent vs. present) was associated with survival</td>
<td>$\phi = 0.001$</td>
<td>$p < 0.001$</td>
</tr>
<tr>
<td>Prehospital vs. ED use was associated with survival without considering shock</td>
<td>$\phi = 0.015$</td>
<td>$p < 0.001$</td>
</tr>
<tr>
<td>Shock (absent vs. present) was associated with prehospital vs. ED use without considering survival</td>
<td>$\phi = 0.001$</td>
<td>$p < 0.001$</td>
</tr>
<tr>
<td>Shock (absent vs. present) was associated with survival without considering prehospital vs. ED use</td>
<td>$\phi = 0.001$</td>
<td>$p < 0.001$</td>
</tr>
</tbody>
</table>

ED = emergency department.

0.001; Table 6). Survival was associated with use both before shock onset (96% before vs. 4% after, 477/499 vs. 22/499, respectively) and prehospital (89% prehospital vs. 78% hospital, 374/422 vs. 59/76, respectively, $p = 0.015$; Table 5).

DISCUSSION

The main finding of the present report is that the major lifesaving benefits of emergency tourniquet use were observed again, and the consistent finding reinforces the recommendation to consider tourniquets in similar care settings. Additionally, the minor morbidity risks were also consistent with the prior reports (3,4). Despite different providers, patients, and site investigators, albeit at the same site using the same methods, the consistent findings increase the generalizability of the previous reports. Rarely is evidence available to show that first aid is lifesaving for limb-injured patients. The only analogous device to the tourniquet is the Thomas splint, which also controls hemorrhage in battlefield open femur fractures (16,17). Most first aid devices are similar to pelvic binders, that is, they have no survival benefit evidenced, and military anti-shock trousers are associated with increased mortality for patients with some diagnoses (18).

A minor finding of the present report was that prehospital death rates from isolated limb exsanguination have dropped to 2%, compared to 9% in the Vietnam War. Tourniquets can control limb hemorrhage, a leading cause of death on the battlefield, with more frequent tourniquet use attributed to fewer deaths from this cause (3,5,6,19–24). In the Vietnam War, when tourniquet use was uneven, about 9% of casualties died from isolated limb exsanguination (7,25). In Somalia, tourniquet use was more common than in Vietnam, and 7% of battlefield casualties died of limb exsanguination (26). Early in the current war, 2% of casualties died from isolated limb exsanguination, and isolated limb exsanguination is no longer considered the leading cause of preventable death on the battlefield in US casualties (27,28). Among Israeli soldiers, the most avid users of tourniquets, investigators found that 0% patients died from isolated limb exsanguination (29).

After studying 499 casualties, it is clear that patients were eligible for tourniquet use in emergency settings if they had a compressible limb area proximal to a wound that risks lethal exsanguination. The tourniquet was not designed to save patients with associated catastrophic head, chest, and abdominal injuries. One patient beyond saving had a traumatic hemipelvectomy; no compression was effective about the hemipelvectomy wound. Very proximal wounds in the groin and axilla have poor results if lesions are non-compressible, lesions of intermediate compressibility have intermediate results, and fully compressible lesions have good results (4). The present findings help define which patients are the best candidates for emergency tourniquet use.

The data of the present study indicate that the ideal time to use a tourniquet is before the onset of shock. Shock prevention seems to be a determinant of survival, and prehospital tourniquet use simply treats more patients before shock onset. The main lifesaving opportunity on the battlefield is prehospital hemorrhage control for limb-injured patients (7,25,30,31). The evidence indicates that tourniquets prevent but do not reverse shock. Use may prevent shock from worsening, and may lessen the risk of additional resuscitation and its sequelae.

The wrong time is later, after shock onset, meaning that, by then, much of the lifesaving benefit has been lost. Casualties with tourniquets applied after extraction from vehicles or when casualties exsanguinated before care was given have a high mortality. Hemorrhage can be incremental during transportation, arrival at hospital, during resuscitation, and before, during, and after operation, thus, continuous monitoring for hemorrhage control is recommended (4,22,24,32,33). Even though providers such as ambulance and flight medics provide prehospital care, tourniquet use at such time proved to be too late after shock onset, and earlier use would prevent shock. Battle casualties may exsanguinate rapidly from limb injury, perhaps lethally, in just a minute or 2 (19,26,30,34–37). Casualties sometimes died quickly from hemorrhage without tourniquets, whereas others with tourniquets survived more often and for a longer time, and longer survival permitted more effective resus-
injury, are vital lessons relearned (24,33). Clothing was
recurr in casualties, especially in the first 2 days after
forwarding is an example of why monitoring and re-
ment, or pocket cargo under the tourniquet, and move-
veins. Looseness was associated with clothing, equip-
niquets slide around and may not occlude the arteries or
the tourniquet is wide enough for the limb). Loose tour-
stay in place and reliably occlude the arteries (assuming
survival with minor morbidity (3,4,32). Snug tourniquets
in the bottom of a rucksack or a vehicle bin was lethal.

Misuse of tourniquets increases morbidity and mor-
tality, whereas using them in the right way improves
battlefield (20,21,23,24,39,40). The data indicate that
how much limb casualties bleed is limited, even on the
battlefield (20,21,23,24,39,40). The data indicate that
emergency tourniquets are tools which, if used correctly,
are helpful and carry only minor risk. If misused, there is
an increased risk of mortality and morbidity. More stud-
ies are needed to determine when tourniquets should be
applied.

The risk of morbidity associated with tourniquets, such as temporary nerve palsy and limb shortening, was
consistent and low for both study periods (1.7%, 1.5%,
and 0.4%, 0.4%, respectively). Thus, in light of the ma-
lor lifesaving benefit, the minor morbidity risk justifies
the policy of encouraging tourniquet use in the current

LIMITATIONS

Limitations of the present report are that it does not detail
morbidity and that it is a wartime study. Wartime con-
strained us to a practical, prehospital definition of shock
with manual vital signs, for example, loss of radial pulse
in an uninjured limb, which generally concords with
class 3 and 4 hemorrhagic shock. Such prehospital de-
finitions of shock are practical and valid but have limita-
tions, including limited study in the civilian community.
The scientific merit of a randomized prospective trial
would be great by limiting confounding variables, but it
would be unethical. Dead casualties might have had
undetected lesions. Persons with limited training most
frequently made the decision to use tourniquets; there
were no controls for injury severity or other confounding
variables like head or torso injuries. The costs of fielding
tourniquets (the standard Combat Application Tourni-
quet costs about $28) and training soldiers were not
studied.

Further research should include detailed morbidity
analyses, cohort studies comparing use vs. non-use from
databases like the military trauma registry, studies com-
paring medical (anatomic lesions) vs. tactical indica-
tions, and study at sites other than Baghdad to assess
generalizability further. In real-world shock studies, con-
founding exists because individual casualties have dif-
ferent propensities to develop shock, perhaps based on
their initial blood volume or genetic make-up.

CONCLUSIONS

Battle casualty survival rates are consistently high with
emergency tourniquet use to stop bleeding, and morbidi-
ty rates remain low. Evidence indicates that when used
at the right time in the right way, emergency tourniquets
are lifesaving.

REFERENCES

tourniquets: there should be no controversy. J Trauma 2004;56:
214–5.
2. Husum H, Ang SC, Fosse E. War surgery field manual. Penang,
Malaysia: Third World Network; 1995.
tourniquets to stop bleeding in major limb trauma. J Trauma
2008;64:S38–50.
tourniquet use to stop bleeding in major limb trauma. Ann Surg
5. Mabry RL. Tourniquet use on the battlefield. Mil Med 2006;171:
352–6.
niquet use in Operation Iraqi Freedom: Effect on Hemorrhage

ARTICLE SUMMARY

1. Why is this topic important?
 Tourniquet use as first aid is lifesaving on the battlefield but controversial in civilian trauma, and recent military experiences are referents of lessons learned.

2. What does this study attempt to show?
 Battle casualty survival rates remain high with emergency tourniquet use to stop limb bleeding, whereas morbidity rates remain low in comparison with prior reports.

3. What are the key findings?
 Evidence indicates that when used for the right patient at the right time in the right way, emergency tourniquets save lives. Placing a tourniquet before the onset of shock improves the survival rate in exsanguinating limb injuries.

4. How is patient care impacted?
 Tourniquet use for limb hemorrhage control on the battlefield increases survival time, permitting more effective resuscitation and yielding higher survival rates.